
Track 4 Session 6
NoSQL databases – an overview

Karsten Lehmann | CEO | Mindoo GmbH

2NoSQL databases – an overview

About us

● Mindoo is a IBM Business Partner and a Notes/Domino Design Partner

● We focus on the "new" aspects of IBM Lotus Notes development
─ Eclipse/Expeditor plug-ins and rich client applications
─ XPages applications

● As well as web application development for IBM Websphere and Oracle
Glassfish

● Karsten Lehmann and Tammo Riedinger
─ Founders of Mindoo GmbH
─ Since 2004, developers of the MindPlan® application for Haus Weilgut GmbH,

Mind mapping and project management for Lotus Notes, IBM Award Winner 2008

● More information at:

● http://www.mindoo.com

3NoSQL databases – an overview

Agenda

● Introduction

● What is NoSQL?

● Classes of NoSQL databases

● Kundera library

● Stocktaking: Where does Lotus Notes stand?

● Summary

● Q&A

4NoSQL databases – an overview

When your only tool is a hammer, every problem looks like a nail.

5NoSQL databases – an overview

Motivation

● Lotus Notes is not the best solution for every problem

● Lotus Notes is one of the oldest representatives of NoSQL

● For years, more and more dynamic in the NoSQL database field but
unfortunately little advancement of NSF

● Through the knowledge of what "the others" can do, one learns to appreciate
the Lotus Notes advantages, make justified demands for IBM and has more
tools in the repertoire

● The lecture provides a rough NoSQL market overview from the developer's
point of view:

─ What are the others capable of?
─ Which problems do I solve with which database?
─ Code snippets to break down inhibitions – everything is so easy :-)

6NoSQL databases – an overview

Agenda

● Introduction

● What is NoSQL?

● Classes of NoSQL databases

● Kundera library

● Stocktaking: Where does Lotus Notes stand?

● Summary

● Q&A

7NoSQL databases – an overview

What is NoSQL?

● "Not only SQL", not "No SQL"!

● Stands back from the relational scheme in favor of scalability
→ Avoidance of JOINs

● Enables /simplifies scalability and sharding: distribution of data to several linked
machines (shards)

● Flexible (natural) storage model

● Large number of more or less active suppliers:
More than 130 NoSQL databases at http://nosql-database.org !

http://nosql-database.org/

8NoSQL databases – an overview

CAP theorem

● According to Eric Brewer, 2000; since 2002, proven and theorem

● Suitable for the evaluation of database reliability

● Important characteristics with distributed data storage:

─ Consistency
all clients have the same data view at all times

─ Availability
clients can read and write at all times

─ Partition tolerance
the system is working completely despite physical network division

● Theorem: only two of the three properties possible with distributed data storage

9NoSQL databases – an overview

CAP theorem

A

C P

Availability:
clients can read and
write at all times

Consistency:
all clients have the
same data view
at all times

Partition tolerance:
the system is working
completely despite
physical network
division

Pick two!

CA
RDBMS
Neo4j

AP
CouchDB
Cassandra
Lotus Notes
Voldemort

Data models:
Relational
Key/Value-oriented
Column-oriented
Document-oriented
Graph-oriented

CP
CouchBase
HBase
MongoDb
Redis

10NoSQL databases – an overview

CAP theorem

● Leads to abandonment of ACID requirements, moving toward BASE

─ Atomicity - implementing a transaction fully or not at all
─ Consistency - guaranteeing integrity of the database
─ Isolation - transactions are carried out independent of simultaneously running

transactions
─ Durability - after commitment of the transaction, changes are saved permanently

─ Basically available - system is generally available, availability is not guaranteed
though

─ Soft state - system state can change over time even without data entry
─ Eventual Consistency - ultimate consistency: temporary inconsistency of the

database is accepted, consistency is restored with a delay only

11NoSQL databases – an overview

Agenda

● Introduction

● What is NoSQL?

● Classes of NoSQL databases

─ Key/value-oriented
─ Column-oriented
─ Document-oriented
─ Graph-oriented

● Kundera library

● Stocktaking: Where does Lotus Notes stand?

● Summary

● Q&A

12NoSQL databases – an overview

Key/value oriented databases

13NoSQL databases – an overview

Key/value oriented

● Representatives
─ Memcached (including YouTube, Wikipedia, Twitter, Flickr)
─ Redis (VMWare employs developers for work on Redis)
─ Voldemort (code of LinkedIn put under Open Source, including Nokia Committer)

● Data model memcached
─ Unstructured map of key/value pairs
─ Analog to a Java HashMap

function get_foo(foo_id)
 foo = memcached_get("foo:" + foo_id)
 if (foo!=null) return foo

 foo = fetch_foo_from_database(foo_id)
 memcached_set("foo:" + foo_id, foo)
 return foo
end

14NoSQL databases – an overview

Key/value oriented

● Redis expands pure key/value store with lists, sets and sorted sets

● Setting/reading values with expiry date (key="resource:lock")

 SET resource:lock "lockowner1"
 //automatic expiration of data
 EXPIRE resource:lock 120
 GET resource:lock => "lockowner1"
 //check time-to-live
 TTL resource:lock => 113

● Working with lists

 RPUSH friends "Tom" => ["Tom"]
 RPUSH friends "Bob" => ["Tom","Bob"]
 LPUSH friends "Sam" => ["Sam", "Tom", "Bob"]
 LRANGE friends 0 1 => ["Sam","Tom"]

15NoSQL databases – an overview

Key/value oriented

● Working with sets (unsorted collections of values)

 SADD key1 "a"
 SADD key1 "b"
 SADD key1 "c"
 SADD key2 "c"
 SADD key2 "d"
 SADD key2 "e"
 SINTER key1 key2 => "c"

● Working with sorted sets (sorted collections of values)

 ZADD hackers 1940 "Alan Kay"
 ZADD hackers 1953 "Richard Stallman"
 ZADD hackers 1965 "Yukihiro Matsumoto"
 ZADD hackers 1916 "Claude Shannon"
 ZADD hackers 1969 "Linus Torvalds"
 ZADD hackers 1912 "Alan Turing"
 ZRANGE hackers 2 4 => ["Alan Kay","Richard Stallman","Yukihiro
Matsumoto"]

16NoSQL databases – an overview

Applications

● RAM caches

● Fast saving of logs (e.g. error logs of Load Balancer)

● In-memory MessageQueue for interim buffering of news

● More complex applications with a little creativity, e.g. a Twitter clone:
→ http://redis.io/topics/twitter-clone

http://redis.io/topics/twitter-clone

17NoSQL databases – an overview

Advantages and disadvantages

● Advantages
─ Performance high and predictable
─ Simple data model
─ Clear separation of saving from application logic (because of lacking query

language)

● Disadvantages
─ Limited range of functions
─ High development effort for more complex applications

18NoSQL databases – an overview

Column-oriented databases

19NoSQL databases – an overview

Column-oriented databases

● Representatives
─ Apache Cassandra (formerly Facebook, Twitter for Tweeds, Digg, Netfix)
─ Apache HBase (including Facebook, Twitter)

● Data storage as column values for a row key (row ID)

● Random column values can be stored per row, number limited only by memory
space

● Sharding done via row ID; Data of a row have to fit on a server

● Server sorts columns automatically; allows mapping of data lists

● "If your data model has no rows with over a hundred columns, you're either
doing something wrong or you shouldn't be using Cassandra"

20NoSQL databases – an overview

Apache Cassandra in detail

● Implemented in Java

● Language support: including Java, JavaScript, Python, PHP, Ruby

● Originally developed at Facebook

● Released since 2008, top level project at Apache since 2010

● Large community of developers and users

21NoSQL databases – an overview

Apache Cassandra in detail

user_id username state

1 jbellis TX

2 dhutch CA

3 egilmore NULL

blog_id user_id blog_entry categoryid

101 1 Today I... 3

102 2 I am... 2

103 1 This is... 3

subscriber blogger row_id

1 2 1

2 1 2

1 3 3

category categoryid

sports 1

fashion 2

technology 3

Relational database

User table Blog table

Subscriber table Category table

● Relational model of a blog

22NoSQL databases – an overview

Apache Cassandra im Detail

Keyspace „Blog“

jbellis name state

Jonathan TX

dhutch name state

daria CA

egilmore name state

eric

Static Column Family (CF) „Users“

92dbeb5 body user category

Today I... jbellis tech

d418a66 body user category

I am... dhutch fashion

6a0b483 body user category

This is... egilmore sports

Static Column Family „Blog entries“

jbellis 1289847840615

92dbeb5

dhutch 1289847840615

d418a66

egilmore 1289847844275

6a0b483

Dynamic CF „time_ordered_blogs_by_user“

jbellis dhutch egilmore

dhutch egilmore dhutch

egilmore jbellis

Dynamic CF „subscribers_of“

● Blog implementation with Cassandra

23NoSQL databases – an overview

Apache Cassandra im Detail

● Keyspace
─ Container for several column families
─ E.g. for encapsulation of all data of an application

● Column family
─ Comparable to database table in RDBMS
─ Grouping of several columns
─ Optional determination of column data types
─ Every row can have different column values as oppose

to RDBMS

● Static column family
─ Fixed column values, e.g. for properties of an object

● Dynamic column family
─ Random columns, sorted on column name (name e.g.

also timestamp or UUID)
─ Query of column areas possible (years 2011-2012)
─ Depending on the case, column name may be sufficient

as information, value stays empty

Keyspace

jbellis name state

Jonathan TX

dhutch name state

Daria CA

egilmore name state

Eric

jbellis dhutch egilmore

dhutch egilmore dhutch

egilmore jbellis

24NoSQL databases – an overview

Apache Cassandra im Detail

● Column
─ Smallest data unit
─ Tuple with (name, value, time-stamp)
─ Value with highest time-stamp wins

● Special columns
─ Expiring columns: columns with automatic expiration
─ Counter columns: column without timestamp comparison during writing; DB

guarantees that value is increased

● Super columns
─ Grouping of several columns in a joint lookup value (e.g. "Address" with columns

"Street", "ZIP", "City")
─ Sorting on super column and contained sub columns definable
─ Limited usability because reading sub columns requires loading all sub columns of

the super column

Column_name

value

timestamp

25NoSQL databases – an overview

Applications

● HBase
─ Data warehousing, analysis of large data stocks with Map/Reduce (Hadoop project)
─ Advantages over Cassandra during reading

● Cassandra
─ Logging of large amounts of data (e.g. price data, sensor data or log files)
─ Advantages over HBase during writing
─ Data written without prior reading process (append only)
─ Data on disk not changed subsequently, compaction cleans outdated data stock

● Generally applications with low query dynamics and very large amounts of data

26NoSQL databases – an overview

Advantages and disadvantages

● Advantages
─ Designed for performance
─ Native support for persistent views toward key/value store
─ Sharding: Distribution of data to several servers through hashing row ID
─ Column-oriented systems more efficient than row-oriented during aggregation of a

few columns from many rows

● Disadvantages
─ Limited query/filtering options for data

→ Can be compensated through combination with Apache Lucene/Solr:
 Solandra project

─ High maintenance effort during changing/deleting of existing data because of
updating of all lists

─ Less efficient than row-oriented systems during access to many columns of a row

27NoSQL databases – an overview

Document-oriented databases

28NoSQL databases – an overview

Document-oriented databases

● Representatives
─ MongoDB (including SAP, MTV, Sourceforge, Foursquare)
─ Apache CouchDb (including BBC)
─ Couchbase (including Adobe, BMW, Cisco, Zynga)
─ Lotus Notes

● Storage of data in the form of documents, frequently mapped in JSON format

{
 title : 'This is a blog post',
 author : 'Peter',
 content : 'It's working!'
}

● Documents grouped as collections/views

● Queries ad hoc or via persistent view index

29NoSQL databases – an overview

MongoDB in detail

● Implemented in C++

● Language support: including Java, JavaScript, Python, PHP, Ruby

● Saved as binary JSON: BSON

● Supports sharding
─ done via configurable document fields
─ System automatically balances data between shards
─ Shards can be amended during runtime
─ Selection of sharding keys essential for performance!
─ Avoidance of hotspots, i.e. servers with high I/O load
─ Simultaneous index updating after changes on as few machines as possible

→ Finding a compromise

30NoSQL databases – an overview

MongoDB in detail

● Sharding architecture:

S1.1 mongod

S1.2 mongod

S2.1 mongod

S2.2 mongod

S3.1 mongod

S3.2 mongod

...

mongos mongos ...C2 mongod

C1 mongod

client

Shards

Config server as
Replica set
(cluster metadata,
data for load balancing
in shards)

Replica sets
(failover, 2-3
per shard)

Routing
processes
(routing of queries
to shards, merging
Of return values)

31NoSQL databases – an overview

MongoDB in detail

● Create connection to DB

Mongo connection = new Mongo(server,port);
//collection gets created automatically
DBCollection collection =
connection.getCollection(“posts”);

● Collect data (JavaScript syntax)

collection.insert({
 title : 'This is a blog post',
 author : 'Karsten',
 ts: 1331915835960,
 content : 'It's working!'});

32NoSQL databases – an overview

MongoDB in detail

● Collect data (Java syntax)

DBObject post = BasicDBObjectBuilder.start()
 .add("title", "This is a blog post")
 .add("author", "Karsten")
 .add("ts", 1331915835960)
 .add("content", "It's working!"))
 .get();

collection.insert(post);

System.out.println(post.get("_id"));
=> 4a9700dba5f9107c5cbc9a9c

● Or different constructors of BasicDBObject

33NoSQL databases – an overview

MongoDB in detail

Update data

//$ commands for advanced query/update features
collection.update({_id : post._id},
{
 mod_ts : 1331915836050
 $push : {comments :
 {
 author : 'Tammo',
 comment : 'Cool!'
 }
}});

● First argument: query for document
Second argument: new field values

● $push adds array values or creates array

34NoSQL databases – an overview

MongoDB in detail

● Data readout

● Comprehensive query language for data selection
─ $gt, $gte, $lt, $lte, $eq, $neq, $exists, $set, $mod, $where, $in, $nin, $inc, $push,

$pull, $pop, $pushAll, $popAll

collection.find({ x : {$gt : 4}}) //x greather than 4

● Index creation for document values speeds up access to / search in collections

//create index for more performance:
collection.ensureIndex({"comments.author": 1})

commentsByPeter = collection.find({
 "comments.author" : "Peter"
});

35NoSQL databases – an overview

MongoDB in detail

● Reading data with paging

collection.ensureIndex({ "author" : 1,
 "ts" : -1,
 "comments.author" : 1 });

var cursor=collection.find({author:'Peter'})
 .sort({ts:-1})
 .skip(pageNum * resultsPerPage)
 .limit(resultsPerPage);

while (cursor.hasNext()) {
 printArticle(cursor.next());
}

36NoSQL databases – an overview

Demo
Using MongoDB in an XPages application

37NoSQL databases – an overview

Advantages

● Intuitive data structure, already familiar from Lotus Notes

● Simple "natural" modeling of requests with flexible query functions
─ Views per Map Reduce in Couch
─ Mongo Query language

● MongoDB/CouchBase: sharding for Big Data

38NoSQL databases – an overview

Advantages

● MongoDB
─ Query language similarly dynamic as SQL
─ GridFS as add-on to MongoDB to save large binary files incl. sharding/replication in

a cluster (max. document size otherwise 4 MB)
─ Geo-spatial indexing built-in (search of next gas station at [longitude,latitude])

● CouchDB
─ Offline synchronization similar to Lotus Notes

● CouchBase Mobile
─ iOS/android port of the database, communicates with CouchBase server in the

Cloud

39NoSQL databases – an overview

Disadvantages

● CouchDB: future uncertain, developer team focuses on new CouchBase DB

● MongoDB: no solutions for offline data storage on mobile devices

● Compared to column-based database, probably higher hardware demands
because of more dynamic DB queries in part without data preparation

● Compared to RDBMS, redundant storage of data (denormalization) in favor of
higher performance

40NoSQL databases – an overview

Graph-oriented databases

41NoSQL databases – an overview

Graph-oriented databases

● Representatives
─ FlockDB (developed by Twitter for Social Graph)
─ Neo4j (including Deutsche Telekom, Adobe, studiVZ, Cisco)
─ AllegroGraph (including Kodak, Pfizer and in various Semantic web projects)

● Databases optimized for highly networked data

● Graph from nodes and relationships between nodes

● Nodes and relationships can have properties

Graph-DB

NoSQL

belongs to

is a is ais a

FlockDB
url: github.com/twitter/flockdb

Neo4j
url: neo4j.org/

AllegroGraph
url: http://www.franz.com/...

42NoSQL databases – an overview

Neo4j in detail

● Implemented in Java

● Unlike previous NoSQL examples, ACID compliant

● Easily embedded in individual applications

EmbeddedGraphDatabase graphDb =
new EmbeddedGraphDatabase(DB_STORAGEDIR);

//
//work with graphDb here
//
graphDb.shutdown();

43NoSQL databases – an overview

Neo4j in detail

DB access encapsulated in transactions

Transaction tx = graphDb.beginTx();
try {
 // create nodes and relationship
 firstNode = graphDb.createNode();
 firstNode.setProperty("message", "Hello, ");
 secondNode = graphDb.createNode();
 secondNode.setProperty("message", "World!");

 relationship = firstNode.createRelationshipTo(
 secondNode, RelTypes.KNOWS);
 relationship.setProperty("message", "brave Neo4j ");

 // read data
 System.out.print(firstNode.getProperty("message"));
 System.out.print(relationship.getProperty("message"));
 System.out.print(secondNode.getProperty("message"));

 tx.success();
}
finally { tx.finish(); }

44NoSQL databases – an overview

Neo4j in detail

● API functions for traversing graphs and searching for all /the shortest paths
between two nodes

● Query language: Gremlin (Groovy based traversing language) and Cypher
(declarative graph query language)

● Cypher: Find all friends of Peter's friends who are not his friends

START peter=node:node_auto_index(name = 'Peter')
MATCH peter-[:friend]->()-[:friend]->fof
RETURN peter, fof

● Result:

Node[4]
name: Peter

Node[1]
name: Silke

Node[5]
name: Jens

Node[2]
name: Lara

Node[3]
name: Ilja

peter fof

Node[4]
{name->"Peter"}

Node[2]
{name->"Lara"}

Node[4]
{name->"Peter"}

Node[3]
{name->"Ilja"}

friend friend

friend friend

45NoSQL databases – an overview

Neo4j in detail

● Cypher: Deliver all persons that I know and their children if they have any:

START me=node(1)
MATCH me-->person-[?:parent_of]->children
RETURN person, children

Node[1]
name: Karsten

Node[3]
name: Silke

Node[4]
name: Jens

Node[5]
name: Lena

friends knows

parent_of

Node[2]
name: Fred

parent_of

46NoSQL databases – an overview

Applications

● Modeling of social networks
─ Friend recommendations

● Examination of access rights
─ Person X - is included in → group A
─ Group A - is included in → group B
─ Group B - is included as editor in → ACL of names.nsf
─ What type of access does the user have to which databases?

● Product recommendations
─ What music that I haven't bought yet do my friends like?

● Route planning

47NoSQL databases – an overview

Demo
Neo4j embedded in XPages application

48NoSQL databases – an overview

Advantages and disadvantages

● Advantages
─ Very compact modeling of networked data
─ Large performance advantages over RDBMS depending on application case
─ Neo4j

– ACID compliance
– Problem-free embedding in other applications

● Disadvantages
─ Neo4j

– Unlike FlockDB, no sharding built-in but master-slave replication
– „This can handle billions of entities…but not 100B“
– License fees for OEM use

49NoSQL databases – an overview

Overview of NoSQL size/complexity

● Increasing DB complexity lowers the possibility of distributing data efficiently

Key/Value DB

Column DB

Document DB

Graph DB

Size

Complexity

50NoSQL databases – an overview

Agenda

● Introduction

● What is NoSQL?

● Classes of NoSQL databases

● Kundera library

● Stocktaking: Where does Lotus Notes stand?

● Summary

● Q&A

51NoSQL databases – an overview

Kundera – the common denominator

● JPA* compatible tool kit for saving data in RDBMS, HBase, Cassandra and
MongoDB

● Simple persistence of data with the help of annotated POJOs**

● Maps JPA query language on DB functions
─ Uses Apache Lucene as external indexer for missing functions

● Change of NoSQL database merely a configuration change

*Java Persistence API
**Plain Old Java Objects

52NoSQL databases – an overview

Kundera – the common denominator

@Entity
@Table(name = "users", schema = "KunderaExamples@cassandra_pu")

public class User {
 @Id
 private String userId;
 @Column(name="fullname")
 private String fullName;

 public User() {

 }
 public String getUserId() {
 return userId;
 }
 public void setUserId(String userId) {
 this.userId = userId;
 }
 public String getFullName() {
 return fullName;
 }
 public void setFullName(String fullName) {
 this.fullName = fullName;
 }
}

mailto:KunderaExamples@cassandra_pu

53NoSQL databases – an overview

Kundera – the common denominator

User user = new User();
user.setUserId("0001");
user.setFullName("Hans Müller");

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("cassandra_pu");

EntityManager em = emf.createEntityManager();

//save object
em.persist(user);

//load object
User anotherUser = em.find(User.class, "0002");

em.close();
emf.close();

54NoSQL databases – an overview

Kundera – Advantages and disadvantages

● Advantage
─ Investment-safe development because of independence of database
─ Comprehensive queries even with column-oriented DB, Lucene index storable in

Cassandra itself
─ Simplified data transfer between NoSQL databases

● Disadvantage
─ Less influence on definite data storage; poss. lowest common denominator of the

features
─ Kundera Open Source, but the community is rather small

55NoSQL databases – an overview

Agenda

● Introduction

● What is NoSQL?

● Classes of NoSQL databases

● Kundera library

● Stocktaking: Where does Lotus Notes stand?

● Summary

● Q&A

56NoSQL databases – an overview

Features of the others that Lotus Notes is missing?

● Storage of more than 16/32/64 KB data in fields

● Modern Java APIs
─ designed for performance
─ no recycling
─ Java generics
─ attachment streaming
─ access to transactions in the code

● Ad hoc database queries
─ UnQL, Mongo Query Language, Map Reduce

● Web 2.0 compatible license model for startups (free without support)

● Big Data support: Removal of the 64 GB limits, sharding

● Geo-spatial indexing

57NoSQL databases – an overview

Features of Lotus Notes that the others are missing?

● NSF
─ Built-in storage of attachments in documents

● Miscellaneous
─ All-in-one solution of useful individual components
─ User/Group directory
─ HTTP server
─ Full text engine incl. indexing of file formats
─ Mail server / calendaring and scheduling
─ Application server
─ Read/write access rights on document level
─ Encryption

58NoSQL databases – an overview

Agenda

● Introduction

● What is NoSQL?

● Classes of NoSQL databases

● Kundera library

● Stocktaking: Where does Lotus Notes stand?

● Summary

● Q&A

59NoSQL databases – an overview

Summary

● A lot of dynamics in the NoSQL market
─ no product is perfect

● Comparison of NSF with other databases disillusioning
─ but Lotus Notes is far more than just a database

● Because of the number of system components, it is more a Swiss knife than a
hammer

● Selection of DB platform no either-or
─ finding the right tool for an application case
─ combinations of DBs also possible!

● Not forgetting SQL:
Who really wants eventual consistency
for financial transactions? :-)

60NoSQL databases – an overview

● Introduction

● What is NoSQL?

● Classes of NoSQL databases

● Kundera library

● Stocktaking: Where does Lotus Notes stand?

● Summary

● Q&A

Thanks!

Time for
questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	page38
	Slide 60
	page39

